Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork.

نویسندگان

  • E Delagoutte
  • P H von Hippel
چکیده

Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis.

We have developed a coupled helicase-polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that ...

متن کامل

Assembly and subunit stoichiometry of the functional helicase-primase (primosome) complex of bacteriophage T4.

Physical biochemical techniques are used to establish the structure, subunit stoichiometry, and assembly pathway of the primosome complex of the bacteriophage T4 DNA replication system. Analytical ultracentrifugation and fluorescence anisotropy methods show that the functional T4 primosome consists of six gp41 helicase subunits that assemble into a hexagon, driven by the binding of six NTPs (or...

متن کامل

Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork.

Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading...

متن کامل

Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation.

One primase (gp61) and six helicase (gp41) subunits interact to form the bacteriophage T4-coded primosome at the DNA replication fork. In order to map some of the detailed interactions of the primase within the primosome, we have constructed and characterized variants of the gp61 primase that carry kinase tags at either the N or the C terminus of the polypeptide chain. These tagged gp61 constru...

متن کامل

Collaborative coupling between polymerase and helicase for leading-strand synthesis

Rapid and processive leading-strand DNA synthesis in the bacteriophage T4 system requires functional coupling between the helicase and the holoenzyme, consisting of the polymerase and trimeric clamp loaded by the clamp loader. We investigated the mechanism of this coupling on a DNA hairpin substrate manipulated by a magnetic trap. In stark contrast to the isolated enzymes, the coupled system sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 40 14  شماره 

صفحات  -

تاریخ انتشار 2001